Search results for "cell cycle regulation"

showing 2 items of 2 documents

Knockdown of NANOG Reduces Cell Proliferation and Induces G0/G1 Cell Cycle Arrest in Human Adipose Stem Cells

2019

The core components of regenerative medicine are stem cells with high self-renewal and tissue regeneration potentials. Adult stem cells can be obtained from many organs and tissues. NANOG, SOX2 and OCT4 represent the core regulatory network that suppresses differentiation-associated genes, maintaining the pluripotency of mesenchymal stem cells. The roles of NANOG in maintaining self-renewal and undifferentiated status of adult stem cells are still not perfectly established. In this study we define the effects of downregulation of NANOG in maintaining self-renewal and undifferentiated state in mesenchymal stem cells (MSCs) derived from subcutaneous adipose tissue (hASCs). hASCs were expanded…

AdultHomeobox protein NANOGDown-RegulationBiologyArticleCatalysisSettore MED/13 - Endocrinologialcsh:ChemistryInorganic ChemistrySOX2human adipose stem cellHumansCell Self RenewalPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologyCells CulturedSpectroscopyCell Proliferationmolecular_biologyCell growthOrganic ChemistryMesenchymal stem cellDNMT1lentiviral transductionCell DifferentiationMesenchymal Stem CellsNanog Homeobox ProteinGeneral MedicineMiddle AgedCell cycleG1 Phase Cell Cycle CheckpointsComputer Science ApplicationsCell biologySettore MED/18 - Chirurgia GeneraleNANOGlcsh:Biology (General)lcsh:QD1-999Gene Knockdown Techniquesembryonic structures<i>NANOG</i>Female<i>DNMT1</i>CDKN1Bbiological phenomena cell phenomena and immunityStem cellcell cycle regulationAdult stem cell
researchProduct

Cyclin dependent kinase-1 (Cdk-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (pdac)

2021

Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers in humans, due to late diagnosis and limited treatment possibilities. Improved treatment for PDAC patients is warranted. Cyclin-dependent kinase 1 (CDK1) is a stimulator of cell cycle progression and its activity is regularly enhanced in pancreatic cancer cells. Therefore, CDK1 has been proposed as a novel drug target to treat patients with PDAC. This review describes the potential of CDK1 inhibition as a treatment for PDAC by outlining the molecular pathways influenced by CDK1 inhibition and new therapeutic strategies. Abstract The role of CDK1 in PDAC onset and development is two-fold. Firstly, since …

Cancer ResearchCell cycle checkpointendocrine system diseasesmedicine.medical_treatmentReviewenvironment and public healthTargeted therapyCyclin-dependent kinaseCancer stem cellPancreatic cancermedicineNovel treatmentCDK1 inhibitionRC254-282Cyclin-dependent kinase 1biologyChemistryNeoplasms. Tumors. Oncology. Including cancer and carcinogensPDACPancreatic cancerCell cyclemedicine.diseaseenzymes and coenzymes (carbohydrates)Oncologybiology.proteinCancer researchStem cellbiological phenomena cell phenomena and immunityCell cycle regulation
researchProduct